Cyclic stretch induced IL-33 production through HMGB1/TLR-4 signaling pathway in murine respiratory epithelial cells

نویسندگان

  • Jing Chang
  • Yuefeng Xia
  • Karla Wasserloos
  • Meihong Deng
  • Kory J Blose
  • David A Vorp
  • Heth R Turnquist
  • Timothy R Billiar
  • Bruce A Pitt
  • Ma-Zhong Zhang
  • Li-Ming Zhang
چکیده

Interleukin 33 (IL-33), an inflammatory and mechanically responsive cytokine, is an important component of a TLR4-dependent innate immune process in mucosal epithelium. Although TLR4 also plays a role in sensing biomechanical stretch, a pathway of stretch-induced TLR4-dependent IL-33 biosynthesis has not been revealed. In the current study, we show that short term (6 h) cyclic stretch (CS) of cultured murine respiratory epithelial cells (MLE-12) increased intracellular IL-33 expression in a TLR4 dependent fashion. There was no detectable IL-33 in conditioned media in this interval. CS, however, increased release of the notable alarmin, HMGB1, and a neutralizing antibody (2G7) to HMGB1 completely abolished the CS mediated increase in IL-33. rHMGB1 increased IL-33 synthesis and this was partially abrogated by silencing TLR4 suggesting additional receptors for HMGB1 are involved in its regulation of IL-33. Collectively, these data reveal a HMGB1/TLR4/IL-33 pathway in the response of respiratory epithelium to mechanical stretch.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of MAP kinase activation in interleukin-8 production by human BEAS-2B bronchial epithelial cells submitted to cyclic stretch.

Overstretching the airways during positive pressure mechanical ventilation or attacks of acute severe asthma is associated with important biologic responses. Interleukin (IL)-8-dependent neutrophil recruitment seems to play a critical role in the process of mechanical stress-induced airway inflammation. Herein, we show that human bronchial epithelial BEAS-2B cells submitted to cyclic stretch in...

متن کامل

Hypercapnic acidosis attenuates pulmonary epithelial stretch-induced injury via inhibition of the canonical NF-κB pathway

BACKGROUND Hypercapnia, with its associated acidosis (HCA), is a consequence of respiratory failure and is also seen in critically ill patients managed with conventional "protective" ventilation strategies. Nuclear factor kappa-B (NF-κB), a pivotal transcription factor, is activated in the setting of injury and repair and is central to innate immunity. We have previously established that HCA pr...

متن کامل

Mechanical Ventilation Enhances HMGB1 Expression in an LPS-Induced Lung Injury Model

BACKGROUND Mechanical ventilation (MV) can augment inflammatory response in lipopolysaccharide (LPS) challenged lungs. High mobility group box 1 protein (HMGB1) is a pro-inflammatory mediator in ventilator-induced lung injury, but its mechanisms are not well defined. This study investigated the role of HMGB1 in lung inflammation in response to the combination of MV and LPS treatment. METHODS ...

متن کامل

HMGB1 translocation and release mediate cigarette smoke–induced pulmonary inflammation in mice through a TLR4/MyD88-dependent signaling pathway

We performed studies to determine the role of high-mobility group box 1 (HMGB1) in cigarette smoke (CS)-induced pulmonary inflammation. After mice were exposed to five cigarettes four times a day for 3 d, toll-like receptor 4 (TLR4) expression and TLR4-mediated signaling were significantly up-regulated, and HMGB1 had translocated from the nucleus to the cytoplasm in lung epithelial cells and th...

متن کامل

HMGB1-RAGE pathway drives peroxynitrite signaling-induced IBD-like inflammation in murine nonalcoholic fatty liver disease

Recent clinical studies found a strong association of colonic inflammation and Inflammatory bowel disease (IBD)-like phenotype with NonAlcoholic Fatty liver Disease (NAFLD) yet the mechanisms remain unknown. The present study identifies high mobility group box 1 (HMGB1) as a key mediator of intestinal inflammation in NAFLD and outlines a detailed redox signaling mechanism for such a pathway. NA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017